Energy of Harmonic Maps and Gardiner’s Formula

نویسندگان

  • Richard A. Wentworth
  • RICHARD A. WENTWORTH
چکیده

It is shown that the usual first variational formula for the energy of a harmonic map (or equivariant harmonic map) with respect to the conformal structure on a two dimensional domain extends to case of nonpositively curved metric space targets. As applications, we recover Gardiner’s formula for the variation of the Hubbard-Masur differential and a proof of the existence and uniqueness of quadratic differentials realizing a pair of measured foliations that fill a surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some geometrical properties of the oscillator group

‎We consider the oscillator group equipped with‎ ‎a biinvariant Lorentzian metric‎. ‎Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional‎ ‎restricted to vector fields‎. ‎Left-invariant vector fields defining harmonic maps are...

متن کامل

Regularity of Dirac-harmonic maps

For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...

متن کامل

On the biharmonicity of product maps

where vg is the volume form on (M,g) and e( f )(x) := (1/2)‖df (x)‖T∗M⊗ f −1TN is the energy density of f at the point x ∈M. In local coordinates (x)i=1 on M and (y)a=1 on N , the energy density is given by e( f )(x)= (1/2)gi (x)hab( f (x))(∂ f a/∂xi)(∂ f b/∂x j). Critical points of the energy functional are called harmonic maps. The first variational formula of the energy gives the following c...

متن کامل

Harmonic maps, Bäcklund-Darboux transformations and ”line soliton” analogs

Harmonic maps from R2 or one-connected domain Ø ⊂ R2 into GL(m, C) and U(m) are treated. The GBDT version of the BäcklundDarboux transformation is applied to the case of the harmonic maps. A new general formula on the GBDT transformations of the Sym-Tafel immersions is derived. A class of the harmonic maps similar in certain ways to line-solitons is obtained explicitly and studied. MSC2000: 53C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006